
RADC-TR-77-369, Volume I (of three)

Final Technical Report

November 1977

FACTORS IN SOFTWARE QUALITY
Concept and Definitions of Software Quality

Jim A. McCall
Paul K. Richards

CD Cene F. Walters

General Electric .ompany

Approved for public release; distribution unlimited.

DOG
ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

'r4 3 197)

This report has been reviewcd by the RADC Information Office (01) and is
releasable to the National Technical Information Service (NTIS). At NTIS it
will be releasable to the general public, Including foreign nations.

RADC-TR-77-369, Vol I (of three) has been reviewed and approved for
publication.

APPROVED:

JOSEPH P. CAVANO
Project Engineer

APPROVED: (2 /3
ALAN R. BARNUM, Assistant Chief
Information Sciences Division

FOR THE COMMflANDER:

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (ISIS) Griffiss AE NY 13441. This will assist us in maintaining
a current mailing list.

Do not return this copy. Retain or destroy.

SCCURT SIFICATION OF THIS PAGE (35..., Date Entered)

REOR SameENA~O PAGE .. SWOR tIML910

I. #iStRIU NO.EEN (.1 tNl ReCTALG Nt)

47. TITESUTI S TATEMENT "'nor ththtoiet~di lckN fdln e eot

'rACR PrSotWRQAY EngineerS

Softwaretion QfSftaeuality .rwmn WW ,W Br

Sofwar Measurement

al hiercical defnto ofj-7--#1 fatr fetnotaeqaiywsciled

a f t e r a n e x t e n s i l i e a t r s e r h 7 6h e' d e i i i o o e r h c m t e a g

orened carterstis o h oetlvlo h otaeoineat
oIrs, metrics IO were-ADAON0 develoAe thatNT PRouldT Teidpneto hrgamn Ag-

uage.~~~~~~~~~~~~AE Ths meaurbl crtei weecletdadvaiae snualAi
Fonrdal bses.Ahndokwa eertdtatwl b sfu oAioc

p~~SCRT ILSSCTO O. TONROLIN PAGEC (NAME. Data ADRES'2.RPOT eI -

ssuCINv CLMSPICATIOM OF THIS p*sffib bet Raft4

acquisition managers for specifying the overall qu&Uty of a software systes.

lohI w -Kf D V

JUT~flIIIN -J JAN 23 1918

1SUIUTION/AVAILABILITY "00

ULSSIIED
SILCURITY CLASSIFICA7ICw OP THIS PA@64'Uhfm Date Rawe

PREFACE

This document is the final technical report (CDRL A003) for the Factors in

Software Quality Study, contract number F030602-76-C-0417. The contract was
performed in support of the U.S. Air Force Electronic Syst s Division's

(ESD) and Rome Air Development Center's (RADC) mission provide standards

and tech'nical guidance to software acquisition man rs.

The report was prepared by J. 1cCaJ.. ichards, and G. Walters of the
Sunnyvale Operations, ion Systems Programs, General Electric

Company. Signi nt contributions were made by A. Breda, S. Reiss, and

R .C o l
e n s o

.

Tech cal guidance was provided by J. Cavano, RADC Project Engineer and

C rc tatn A. French, ESD Technical Monitor.

The report consists of three volumes, as followsj

Volume I Concept and Definitions of Software Quality

Volume 11 Metric Data Collection and Validation,

Volume III Preliminary Handbook on Software Quality for an)

Acquisition Manager,

The objective of the study was to establish a concept of software quality

and provide an Air Force acquisition manager with a mechanism to quantita-

tively specify and measure the desired level of quality in a software
product. Software metrics provide the mechanism for the quaptitative specifi-

cation and measurement of quality.

This first volume describes the process of developing our concept of

software quality and what the underlying software attributes are that

provide the quality, and defines the metrics which provide a measure of

the degree to which the attributes exist.

t/i

i/t

F IJ

TABLE OF CONTENTS

Section Page
1 INTRODUCTION/EXECUTIVE SUMMIARY. 1-1

1.1 Task Overview 1-1
1.2 Task Objectives. 1-1

1.3 Acknowledgment of Previous Work 1-4

1.4 Contribution to State of Knowledge 1-4
1.5 Conclusions of the Study. 1-5
1.6 Further Research 1-8

2 DETERMINATION OF QUALITY FACTORS. 2-1

2.1 Definition of Terms. 2-1
2.2 Identification of Quality Factors in the Literature 2-3

2.3 The Process of Grouping Candidate Factors 2-3
2.4 Results and Rationale After Grouping Quality Factors 2-6

3 DEFINITIONS OF QUALITY FACTORS. 3-1

3.1 Conceptualization of Factors fti Software Quality 3-1
3.2 Relationship of Factors to Air Force Applications 3-4
3.3 Relationship of Factors to Life-Cycle Phases 3-10

*4 DEFINITION OF CRITERIA. 4-1

4.1 Defining Factors with Criteria. 4-1
4.2 Relationship Between Factors 4-6

5 EXAMINATION OF SOFTWARE PRODUCTS THROUGHOUT THE
LIFE CYCLE PHASES. 5-1

5.1 Software Products as Sources for Metrics. 5-1

5.2 Range of Software Pt~oducts 5-4

TABLE OF CONTENTS (Continued)

Section Page

6 DEFINITIONS OF METRICS. 6-i1
6.1 Development of Metrics. 6-1

6.2 Description of Metrics. 6-5I
6.3 Summarization of Metrics. 6-71

REFERENCES. Ref-i

BIBLIOGRAPHY. t... Bib-i

APPENDIX A: FACTORS IN THE LITERATURE WITH DEFINITIONS A-1

APPENDIX B: DOCUMENTATION CHARACTERISTICS B-1

LIST OF FIGURES

Figure Number Title Page

1.2-1 Specifying and Measuring Quality Software 1-3
2.1-1 Relationship of Software Quality to Cost 2-2

3.1-1 Allocation of Software Quality Factors to
Product Activity 3-2 -,

4.1-1 Relationship of Criteria to Software Quality
Factors 4-2

5.1-1 Impact of Error 5-2
5.1-2 Concept of Metrics 5-3

6.1-1 Choosing a Metric 6-2
B-1 Software Products B-8

LIST OF TABLES

Table Number Title Page
2.2-1 Candidate Software Quality Factors Extracted

from the Literature 2-4
2.2-2 Sources for Software Quality Factors 2-5

2.4-1 Grouping of Software Quality Factors to Achieve
Unambiguous Set 2-7

3.1-1 Definition of Software Quality Factors 3-5

3.2-1 Categorization of Software in Air Force Systems 3-6

3.2-2 Importance of Software Quality Factors to
Specific Air Force Applications 3-8

3.3-1 The Impact of not Specifying or Measuring
Software Quality Factors 3-11

4.1-1 Criteria Definitions for Software Quality Factors . . . 4-4

4.2-1 Impact of not Applying Criteria In Specifying
Software Quality 4-7

4.2-2 Effect of Criteria on Software Quality Factors 4-8

4.2-3 Relationships Between Software Quality Factors 4-10
5.2-1 Reference Documents 5-5I 6.2-1 Software Quality Metrics 6-7

6.3-1 Summarization of Metrics 6-72
A B-1 Cross Reference Between Identified Documents and

References Where They are Described.........B-9

v

EVALUATION

The Air Force is constantly striving to improve the quality of its
software systems. Producing high quality software is a prerequisite for
satisfying the stringent reliability and error-free requirements of com-
mand and control software. To help accomplish this, a more precise def-
inition of software quality is needed as well as a way to derive metrics
for quantifying software for objective analysis. This effort was initi-
ated in response to the need to better understand those factors affecting
software quality and fits into the goals of RADC TPO No. 5, Software Cost
Reduction in the area of Software Quality (Metrics). General Electric
classified over the complete range of software development both user-
oriented and software-oriented characteristics which were related to Air
Force applications and life-cycle phases. Programming-language independ-
ent metrics were defined using Air Force data bases. Finally, formal
methodology for the validation of the metrics was developed and used.

The significance of this work is that through the establishment of
quality measurement a beneficial impact will occur on the evaluation and
implementation of a software product at each stage of development. Trade-
offs between technical value and cost will be more easily understood. In
addition, Air Force acquisition managers, with the aid of a handbook de-
livered as part of this contract, will be able to specify requirements to
software developers more completely and then determine whether those re-
quirements are being satisfied early enough for corrective action. As
quality measurement becomes more vigorous in the future, the Air Force will
be capable of establishing software product and service standards for
itself and Its contractors.

JSPH P. CAVANO
Project Engineer

*1

vi

SECTION 1

INTRODUCTION/EXECUTIVE SUN44ARY

1.1 TASK OVERVIEW

The Factors in Software Quality task was conducted in support of the

U.S. Air Force Electronic Systems Division's (ESO) and Rome Air Development

Center's (RADC) mission to provide standards and technical guidance to soft-

ware acquisition managers. ESD sponsored the task and RADOC provided

technical project management.

The impetus for this effort and other related work in the analysis of soft-

ware quality can be traced to recommendations for such research made jointly

by DOD, industry, and university .fepresentatives at the Symposium on the High
Cost of Software IWULFW731 in September, 1973, at the Joint Logistics Commanders

Electronic Systems Reliability Workshop (by members of the Software Reliability

Working Group) [FIND75] in May, 1975, and more recently by the DOD R&D Panel.

1.2 TASK OBJECTIVES
In the acquisition of a new software system, a major problem facing a System

Program Office (SPO) is to specify the requirements to the software developer,

and then to determine whether those requirements are being satisfied as the

software system evolves. The parameters of the specification center about the

technical definition of the application and the software role within the over-

all system. Following this, a realistic schedule and costs are negotiated.

While the application functions, cost, and schedule aspects of development

can be objectively defined, measured, and assessed throughout the development

of the system, the quality desired has historically been definable only in

subjective terms. This occurs because the SPO has no quantifiable criteria

against which to judge the quality of the software until he begins to use the

system under operational conditions.

1-1

As represented in Figure 1.2-1, the objective of this study was to provide

guidelines in how to objectively specify the desired amount of quality at

the system requirements specification phase. By levying measurable quality

criteria on the developer, the SPO will be able to subsequently evaluate the

quality of the software not only when the system becomes operational, but

also as each phase of the proj. .t is completed. As a result of corrective

actions the SPO may choose to invoke, these early measurements can signifi-

cantly reduce impact on life cycle cost and schedule.

The figures drawn with solid lines represent the questions the SPO can now ask

and can obtain objective answers. The figures drawn with dashed lines repre-
sent areas which cannot presently be addressed. The objective of this task was

to provide the mechanism to answer the question of how good the software is
more precisely and earlier in the life cycle. The results of this task

provide the basis for the SPO to specify and evaluate the software quality

quantitatively, as is illustrated with the dash-lined figures.

The approach taken to quantify software quality is summarized as follows:

I., Determine a set of quality factors which jointly comprise software

quality. (Section 2,3)

2. Develop a working, hierarchical definition by identifying a set of

criteria for each factor. (Section 4)
3. Define metrics for each criterion and a normalization function which

relates and integrates the metrics for all of the criteria of a
factor to an overall rating of that factor. A scaling of the metrics'

contributions to this rating will result in a figure of merit for

each factor. (Section 5,6,7)

4. Validate the metrics and normalization functions by utilizing the

historical data of two Air Force systems. (Section 7,8)

5. Translate the results of this effort into guidelines that can be used

by Air Force Program Offices to specify the quality of the software

product required and to measure to determine if the development effort

is leading toward that level of quality. (Volume III)

1-2

-IW -rm mum~ ,NT W.- --

CY

4A 4D

0 La

La Lij IA

Iu

LL9L vi1

In taking this approach, we established a comprehensive framework which
facilitates the incorporation of future efforts and refinements to thg

metrics and their correlation to the quality factors. Also, recoanendations
are made on how the metrics should be collected.

The results of this task provide the SPO with a mthodology for specify-

ing the quality he wants in the software and the prOtedures for determining
if he is realizing the level of quality that was specified. By achieving

this goal, the SPO will have objective insight into the software quality

throughout the acquisition process.

1.3 ACKNOWLEDGMENT OF PREVIOUS WORK
In establishing the framework for this study of factors in software quality,
we are attempting to incorporate the work that others have done previously

in this area. An extensive literature search was conducted. The references

are listed following the Appendices and the major references are abstracted

in the bibliography.

We used other RADC sponsored efforts, particularly those in the area of
reliability and maintainability, as input to this task. The planned approach

was to concentrate in those areas where little work has been done.

1.4 CONTRIBUTION TO STATE OF KNOWLEDGE

This study has been directed at expanding upon the current state of knowledge

about software quality. The following aspects of our approach are identified

as expansions to the work to date:

e Provide a global view of software qdality - most previous efforts have

evaluated subsets.
* Provide a formal methodology for the validation of metrics.

* Relate the quality factors to Air Force applications.

s Relate the quality factors to the life cycle phases.

1-4

* Define metrics which are programming language independent.

9 Identify metrics which can be applied early in the development

phase (during requirements analysis and design).

e Attempt to choose criteria that are as independent and unambiguous
as possible.

* Attempt to quantify the correlation of subjective criteria to the

quality factors.

e Identify automated metric data collection tools.

* Provide a framework for factors in software quality that can be used

in future research efforts.

1.5 CONCLUSIONS OF THE STUDY

The effort represents a conceptual study investigating the factors of soft-

ware quality. Our intent was to build upon the significant contributions

of other efforts in recent years related to understanding software quality.

The main thrusts of this study were the formulation of an SPO-oriented concept

of factors in software quality and the establishment and application of

metrics oriented toward the early phases of development. The measures are

indicators of the progress toward the desired quality. They also give

an early indication of the quality factors that are not realizdd~n testing

or during initial operation but have a large cost impact later in theiife

of a product, e.g., portability, reusability, or interoperability.

The complete procedure of establishing a framework for factors in software

quality, defining the factors, relating them to Air Force applications and

the life-cycle phases, establishing criteria, defining them, using them

to identify the relationships and tradeoffs between factors, defining metrics,

establishing their relationship to the quality factors, and validating the

relationship was an iterative process. It has been described in this

report in a sequential manner only for clarity and simplicity. It will

continue to evolve as more experience is gained through the application of

metrics to more software developments.

1-5

The framework established is flexible and expandable. It provides a complete

view of software quality. It provides a mechanism for specifying and measur-

ing the quality of a software product. The following benefits can be
realized from this conceptualization of factors in software quality:

* it is a simple, comprehensive tool for an acquisition manager to use -

guidelines for its use are provided in the form of a handbook.

(Volume III)

e it provides the acquisition manager with a life-cycle view of his

software product, forcing consideration of such factors as main-

tainability and portability in the system specification phase.

* it provides a mechanism for performing high-level tradeoff studies

early in the life cycle (requirements analysis, performance require-

ments analysis, and preliminary design) to help in determining the

product's required capabilities and performance characteristics.

e as the software development process technology advances and new

development techniques are introduced, the metrics can easily and

logically be modified or added.

The set of metrics established provides a comprehensive coverage of the char-

acteristics of a software product. As they exist, they represent an excellent

guideline for testers, quality assurance personnel, and independent verifi-

cation and validation efforts. They also incorporate an extensive composite

of a number of texts on good programming practices and style.

The specific results of the validation phase of the study allow the conclusion

that software metrics are a viable concept. The regression analysis showed

significant correlation for some metrics with related quality factors.

Quantitative metrics can be applied to intermediate products of the soft-

ware development which exist as early as the requirement analysis. As

more disciplined, software engineering approaches are taken toward the

development of software, the more applicable quantitative metrics become.

1-6

The establishment of generalized precise normalization functions was beyond

the scope of the study. The limiting factors were that the sample of mod-

ules and systems was not large enough, general enough, nor had the two

systems, which were used, been through all of the quality factors related

activities (e.g., moved to another environment, linked to another system,

etc.). The sample was representative of two large-scale developments so
the experience of applying the metrics contributed considerable knowledge

to the software quality technology. One other'limiting factor was that

the measures were biased high because the metrics were applied after the

two systems had been delivered. So, even though the metrics were applied

to software products delivered during the development they had been updated

to reflect all of the changes and fixes made to the system as a result of

testing and operational experience. A definite recommendation of this

study then is to apply the metrics during the actual development of a soft-

ware system to further validate their relationship to the resulting quality.

In deriving the set of metrics, the number of metrics became a significant

consideration. The concept of applying the same metric successively

during the development phases helped contain the problem of an unwieldy

number of metrics. The fact that many of the metrics can be collected

automatically assists in making the present set more manageable.

A large number of existing software support tools were identified that pro-

vide metric data collection capabilities. Significantly, several tools

were identified, and some applied, which automate the collection of metrics

in the requirements analysis and design phases of the development. Several

other tools can be developed. Because many tools do exist that provide a

subset of the overall capabilities of data collection required, an integrated

approach must be developed to effectively collect metric data in any soft-

ware development environment.

1-7

Some very practical, beneficial results from the application of the metrics in

their current form have been Identified. When the metrics are applied to the

set of software products available at various times during the development,

they can be used as indicators. Low measurements identify modules or charac-

teristics which should be investigated and the scores justified. The meth-

odology for regression analysis described can be used in conjunction with

this metric indicator concept. The analysis provides an indication of what

specific software characteristics vary in a particular environment relative

to variations in software quality, i.e., which characteristics vary signi-

ficantly and cause variation in the software quality.

This information is beneficial to software developers in writing their

design and programming standards and conventions. It is also beneficial

to QA personnel in identifying areas or modules requiring attention during

development and concentrated testing.

An SPO can use the quantitative nature of the metrics and the framework

of the software quality factors to specify the required level of software

quality quantitatively. By specifying the software quality in terms of

the metrics, the SPO is specifying the desired characteristics of the

software. The characteristics are essentially independent of method or

philosoply of software development so there are no unjustified restrictions

placed on the software developer.

The software quality metrics represent the introduction of a more disci-

plined engineering approach to software quality assurance. They provide

a quantitative tool for the inspection and evaluation of software products

during the development phase.

1.6 FURTHER RESEARCH
Several areas for further research were identified during this effort.

1-8

The exercise of determining the set of metrics revealed several areas requiring

further investigation. Within the transition phase, the two quality factors,

reusability and interoperability, are relatively untouched in the literature.

Little research has been conducted to determine what constitutes reusability

and interoperability or what software attributes provide these qualities.

It is felt that further research in these areas could have potentially high

life-cycle cost benefits.

A second area where we feel further research would be beneficial is in

measuring various aspects of efficiency. Because many of the attributes of

efficiency have a negative effect on all other quality factors, it is an

important consideration of the software quality concept. Most current

measures of efficiency are dynamic measures requiring execution of the

code. In deriving some static measures we realized that an integrated

set of both dynamic and static measures are necessary to judge the degree

of efficiency. Further work is required to develop this type of measure.

Further research, application, and experience are required to formalize

the normalization functions. This report has stressed the methodology

of deriving and validating the normalization functions to encourage the

application of these techniques to other software developments. Use on

future developments will add to the data base for the establishment of

generalized normalization functions, as well as provide indication to the

SPO and software developer of their progression toward a high quality

product. It will also contribute to the error data collection technology

and experience.

As previously mentioned, the metrics should be applied during a software

development to obtain more realistic measures. It is also recommended

that the metrics be applied to specific projects involving (1) software

conversions from one environment to another to validate the metrics

related to portability, (2) efforts linking two systems to validate the

interoperability metrics, and (3) efforts upgrading a system to validate

the reusability metrics. These efforts would not only provide a chance

1-9

for validation of the particular metric$ but also give considerable insight
into additional metrics in these high-payoff, late-lfe-cycle-impact
quality factors.

1-10

SECTION 2

DETERMINATION OF QUALITY FACTORS

2.1 DEFINITION OF TERMS

To be consistent in our determination of factors, criteria, and metrics, we

first established a set of working definitions. This was done in order to

provide a framework from which to more objectively judge candidate quality

factors. The working definitions are as follows:

@ Software: the programs and documentation associated with and result-

ing from the software development process.

* Quality: a general term applicable to any trait or characteristic,

whether individual or generic, a distinguishing attribute which indi-

cates a degree of excellence or identifies the basic nature of

somethi ng.

* Factor: a condition or characteristic which actively contributes to

the quality of the software. For standardization purposes, all factors

will be related to a normalized cost to either perform the activity
characterized by the factor or to operate with that degree of quality.

For example, maintainability is the effort required to locate and

fix an error in an operational program. This effort required may be

expressed in units such as time, dollars, or manpower. The following

rules were used to determine the prime set of quality factors:
- a condition or characteristic which contributes to software quality,

- a user-related characteristic,
- related to cost either to perform the activity characterized by

the function or to operate with that degree of quality,

- relative characteristic between software products.

The last rule, that a factor is a relative characteristic between software

products, requires a brief explanation. Figure 2.1-1 illustrates the relation-
ship between a factor and the cost to achieve different levels of that quality

factor. As an example, we will assume the curve describes the cost to level-of-

quality relationship for the factor, reliability. A much lower level of reli-

ability, which costs less to achieve, may be as acceptable to a management

2-1

COST$

MIS

1 Rating of Factor 0

Figure 2.1-1 Relationship of Software Quality to Cost

information system (MIS) acquisition manager as a much higher level is to a

command and control (C2) manager due to the nature of the applications. So,

while the C2 final product may have a higher degree of reliability according

to our measures, it is no more acceptable to its user than the MIS system with

its lower reliability is to its user. This relationship is further illustrated

in Section 3 where the quality factors are related to specific Air Force

applications.

a Criteria: attributes of the software or software production process

by which the factors can be judged and defined. The following rules

were applied to the determination of criteria:

- attributes of the software or software products of the development

process; i.e., criteria are software oriented while factors are

user oriented,
- may display a hierarchical relationship with subcriteria,

- may affect more than one factor.

o Metrics: measures of the criteria or subcriteria related to the
quality factors. The measures may be objective or subjective. The
units of the metrics are chosen as the ratio of actual occurrences

to the possible number of occurrences. Metrics will be discussed

further in Section 6.

2-2

I-

2.2 IDENTIFICATION OE QUALITY FACTORS IN THE LITERATURE

*A literature search was conducted to assemble all current definitions and to

identify any applicable discussions with respect to software quality factors.
Table 2.2-I summarizes the list of terms extracted from the literature and

represents the baseline of potential or candidate quality factors referenced
in this study.

This list of approximately 55 terms was used as the starting point for deter-

mining the prime set of factors. The next task was to apply the definitions

given in Section 2.1 to the list of candidate factors. The intent of this

exercise was to put into place a standard by which to judge terms with regard

to consistency, redundancy, suitability, etc. The results of applying the

definitions to the candidate terms is discusted in further detail below, where

the rationale for terms such as understandability, modularity, and complexity

is explained.

In Table 2.2-2 we provide a brief cross-reference of definitions and authors

quoted. The total set of definitions analyzed in this report appears in

Appendix A where work by various researchers in the software community are

quoted or paraphased.

2.3 THE PROCESS OF GROUPING CANDIDATE FACTORS

The list of potential factors established in Table 2.2-1 was known to contain

obvious redundancy and some terms which do not comply with all of the rules

identified for the prime set of factors. It was also felt that the list was

far too long to represent a manageable set of factors. For this reason, some

guidelines were generated to aid in grouping the factors into a smaller, con-

cise number of entries which still cover the comprehensive set of software

quality factor characteristics desired. The guidelines used were:

e User-oriented terms are potential factors; software-oriented terms
are potential criteria.

e Synonyms that are Identified are grouped together.

2-3

iable 2.2-1 Candidate Software Quality Factors
Extracted from the Literature

PORTABILITY AUGMENTABI LITY

TRANSFERABILITY INTEGRITY
ACCEPTABILITY SECURITY
COMPLETENESS PRIVACY

CONSISTENCY USABILITY

CORRECTNESS OPERAB IL ITY

AVAILABILITY HUMAN FACTORS
RELIABILITY COMMUNICATIVENESS
ACCURACY STRUCTUREDNESS

ROBUSTNESS MODULARITY

EFFICIENCY UNIFORMITY
PERFORMANCE GENERALITY
CONCISENESS REUSABILITY

UNDERSTANDAB I LITY TESTABILITY

SELF-DESCRIPTIVENESS INTEROPERABILITY

CLARITY CONVERTIBILITY

LEGIBILITY MANAGEABILITY

MAINTAINABILITY COST

STABI LITY ACCOUNTABILITY

ADAPTABILITY SELF-CONTAINEDNESS

EXTENSIBILITY EXPRESSION

MODIFIABILITY VALIDITY

ACCESSIBILITY TIME

FLEXIBILITY COMPLEXITY

EXPANDABILITY
PRECISION DOCUMENTATION

TOLERANCE REPAIRABILITY

COMPATABIL ITY SERVICEABILITY

2-4

